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An exact dynamical renormalization approach in differential form is proposed 
for kinetic van der Waals spin systems with general many-body interactions. 
The problem of restoring covariance in the evolution equation after renormaliza- 
tion of the model is solved by introducing a suitable renormalized time parame- 
ter, which depends also on the magnetization of the spin configuration. The 
study of the behavior of this renormalized time near criticality leads to a scaling 
relation for the linear relaxation time. This relation can be shown to imply the 
exact results for the dynamical critical behavior of the system. 

KEY WORDS: van der Waals spin systems; molecular field; critical dynam- 
ics; differential renormalization. 

1. INTRODUCTION 
When trying to extend to the dynamical context the static renormalization 
approach to critical phenomena, the relevant new problem arises of map- 
ping the given time evolution law in a covariant way into a new law, 
appropriate for the coarse-grained system. Such a problem is in general 
highly nontrivial; this is the main reason why there has been relatively little 
progress in the direction of applying so-called real-space renormalization 
techniques (0 to lattice spin systems with dynamics governed by a master 
equation. (2) The action of block-spin transformations on these systems, for 
example, unavoidably introduces memory effects which, if not handled 
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systematically, destroy the covariance under renormalization of the time 
evolution equation, thus depriving in principle the whole method of its 
effectiveness. 

Especially in view of our still poor ability in facing the general 
difficulties connected with the implementation of a dynamical renormaliza- 
tion program, it seems to us of considerable theoretical interest to study 
model systems, which are simple enough to allow for a complete and 
satisfactory realization of such a program without approximations. 

In the present article we propose and elaborate exactly a renormaliza- 
tion scheme for mean field, van der Waals systems with stochastic dynam- 
ics. As far as the statics is concerned, this renormalization method was 
discussed in a previous publication by the present authors. (3) 3 The scheme 
has the peculiar technical feature of being of a differential type, which 
proved to be extremely powerful and elegant in extracting all the thermody- 
namic and critical properties of the model. While the van der Waals 
systems are relatively trivial in themselves and have some unrealistic 
physical features, the static differential renormalization procedure applied 
to them proved to be very interesting and allowed the explicit calculation of 
some quantities, which could not be otherwise obtained by more standard 
renormalization approaches. Most important, in our opinion, those calcula- 
tions provided an exact prototypical realization of some of the features that 
an analogous approach should show when applied to more complicated 
systems. 

A strong motivation in that work was also given to us by the hope that 
the efficiency of the differential technique could allow for a relatively easy 
dynamical extension of the approach, to which the present article is 
devoted. 

Using our differential scheme, we are able to follow explicitly how the 
dynamics of the model is modified as a consequence of an infinitesimal 
decimation of the degrees of freedom. We then succeed in taking into 
account this modification, together with the accompanying covariance- 
breaking effects, in a very simple and elegant way, by a suitable redefini- 
tion of the time parameter. This completely restores the original form of the 
evolution equation. The knowledge of the transformation of the time under 
renormalization leads finally to the possibility of predicting the behavior of 
the characteristic relaxation time of the system as a function of temperature 
and magnetic field, using only scaling arguments. Consistently with the 
general attitude inspiring the renormalization approach, the results are not 
obtained by solving directly the time evolution of the system, but only by 

3 Hereafter we refer to this paper as I. 
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exploiting properly the properties of the mapping of this evolution into the 
renormalized evolution. 

The paper is organized in five sections, the second of which is devoted 
to the introduction of the model and the discussion of the main features of 
its dynamics. Some of the basic concepts and results of I are briefly 
summarized in Section 3, where our dynamical renormalization program is 
clearly stated. There we also solve explicitly the problem of restoring 
covariance in the equation of motion. The renormalized time function, 
introduced for this covariance, is further discussed in Section 4, and the 
dynamical scaling indices are obtained on the basis of the fixed point 
behavior. Section 5 contains some concluding remarks. An Appendix is 
devoted to a detailed study of the renormalized time function and of the 
scaling corrections. This fully justifies some assumptions made for the 
derivation in Section 4, 

2. THE MODEL AND ITS DYNAMICS 

As in Paper I, we are dealing here with classical spin systems having 
arbitrary many-body, mean field interactions. With the same notations, we 
will write the reduced Hamiltonian f iH as a function of the average 
magnetization m of the given configuration (S  } of the set of N spins: 

- f i l l ({  S }) = Ne(m) (1) 

where fl = 1 / k ~ T  and 
N 

m = U - ]  ~,, Sj (Si = + 1) (2) 
j= l  

In the limit when N goes to infinity, m becomes a continuous variable. 
The equilibrium canonical probability distribution for the configura- 

tions can be written as 

Po(( S ) ) =  Z - ' e  -Bt4~(s}) = Z - ' e  Negro) = rio(m) (3) 

with the partition function 

Z = Tr(s ~e Ne(m) (4) 
Tr(s / indicates a trace over all 2 N configurations. In the following e(m) is 
assumed to be a general, sufficiently regular function, defined on the 
interval ( -  1, 1). 

A kinetic version of a mean field spin model was first studied by 
Griffiths et al. ~4) in connection with the problem of the relaxation time of 
metastable states. Here we introduce the time evolution in a completely 
analogous way, by using a master equation with single spin-flip transitions. 
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We denote by P ( (S  }, t) the time-dependent nonequilibrium probability of 
the configuration { S ), and we assume the evolution equation 

N 
0 O---~P((S ),t) = - E ( w i ( ( ( s ) i  ,si ) ) e ( { ( s ) i  ,si ),t) 

i = 1  

-wi(( (s) , , -s ,} )e({(s) , , -s i ) ,O)  (5) 

By (S)i we have indicated the set of all spins except the ith one, and thus 
{(S)j, - Sj) represents the configuration obtained from (S)  = {(S b, S/) by 
reversing the j th spin. Wj({ S )) describes the probability per unit time for 
the flipping of the j th  spin from S/into - Sj, given a certain configuration 
(s). 

The choice for Wj is of course not unique; here we choose 

Wj((S )) = eo((S })- ' /2eo(((S) j ,  - Sj ))I/2 (6) 

which satisfies the detailed balance condition, thus guaranteeing the ergod- 
icity of the system. 

Like the Hamiltonian, also the nonequilibrium probability distribution 
of the configurations will be assumed to depend only on the mean magne- 
tization m, and it will be written as 

P((S  ),t) = if(re, t )= Z - ' e x p ( N ( e ( m ) +  h(m,t))} (7) 

h(m, t) thus measuring the time-dependent deviation from the equilibrium 
distribution. Since the Z appearing in (7) is the time-independent partition 
function, the function h(m, t) must embody an m-independent term such 
that 

Tr(s)P((S },t) = 1 (8) 

The way in which our system approaches equilibrium wiU be fully de- 
scribed by the time dependence of h(m, t). 

The time evolution of h is easily obtained in the thermodynamic limit, 
when we let N go to infinity. The discrete variable m becomes continuous 
in this limit, and (5) can easily be translated into a partial differential 
equation for h. Indeed, starting from (5) and taking into account that the 
magnetization of a given configuration {S) changes from m to m -  
(2Sj /N)  after flipping thejth spin, one obtains with simple algebra, for N 
going to infinity, 

Oh - cosh ~ + m sinh b + cosh(~ + 2/~ ) - m sinh(~ + 2/~ ) (9) 
0t 

where the dots indicate partial derivatives with respect to m. After differen- 
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tiation with respect to m on both sides, (9) becomes a quasilinear partial 
differential equation for/~(m, t). 

In what follows, we will work with the linearized version of (9), in 
which only first-order contributions in h are taken into account. This is 
sufficient as far as the discussion of the linear relaxation of the system is 
concerned. This linearized version of (9) can be written in the form 

0---0-h - A (k, m)/~ (10) 
0t 

with 

A ( f , m )  = 2(sinh f -  mcosh f )  (11) 

The specific form of A is of course a consequence of the choice we made in 
(6) for the transition probabilities. In view of further considerations, it is 
interesting to notice that an equally acceptable choice would be to multiply 
the right-hand side of Eq. (6) by an arbitrary positive nonsingular function 
of (S)j. If we are interested in an equation still leading to an evolution 
completely describable in terms of the variables t and m alone, then the 
dependence on (S)j  can be assumed through the argument (m - S j / N ) ,  
which is Sj independent. One can easily check that if we call a(m - S j / N )  
the above function, then the coefficient A in the final equation (10) is 
replaced by 

A'(~ ,m)  = a (m)A  (~,m) (12) 

Equation (10) can be  seen to have the general solution 

h(m,  t) = ho(~o(m, t)) (13) 

rho(m,t) is the inverse of rh(mo, t ), which is itself the solution of the 
characteristic equation 

e 

dm = _ A (b (m),  m) (14) 
dt 

with the initial value m(t  = O) = m o. The function h o is given by the initial 
condition on the deviation from equilibrium: 

ho(m ) = h(m,  0) (15) 

From the solution (13) all the dynamic information on the infinite 
system can be obtained in first order in the deviations from equilibrium. 
The evolution of the average magnetization, in particular, can be obtained 
straightforwardly by a standard saddle point argument for this N infinity 
situation. We mention that a more extended and formally rigorous discus- 
sion of models within the class discussed here can be found in Ref. 5. 
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3. INFINITESIMAL TRANSFORMATIONS AND THEIR EFFECT ON 
THE DYNAMICAL EVOLUTION 

The renormalization approach in statics is based on the idea of 
expressing the free energy of the initial system as that of a transformed, 
coarse-grained system, with different interactions, but with the same func- 
tional form of the free energy per particle. (1) Such a relation between the 
free energies of the two systems is then expected to reduce, near criticality, 
to a realization of Widom's generalized homogeneity condition for the 
thermodynamic potential. In this way one is able to draw conclusions 
about both the location and the nature of the singularities displayed by the 
system. This information is obtained from the simple transformation prop- 
erties of the free energy, and not from an explicit calculation of this 
function. 

In Paper I we discussed a one-parameter dependent family of static 
transformations of the above-mentioned type. They were basically obtained 
by eliminating one of the N spins in the summation (4) for the partition 
function. We computed the negative energy function e'(m) for a system of 
N '  = N - 1 particles, up to first order in N -  1 as 

a (m - t a n h ~ ) s i n h 2 ~ - g )  (16) e' = e + N - l ( e  - m k  + ln(2cosh~) + ~- 

where a is a variable parameter and g a normalization constant, indepen- 
dent of m, fixed, e.g., by the condition e'(O) = e(0). At the same time, the 
free energies per particle of the old and of the new system are related by the 
equation 

flF(e') = (1 + N - 1 ) f l F ( e )  + N - l g  (17) 

It is essential for the discussion of the critical properties of the system that 
the new free energy has the same functional dependence on e' as the 
original free energy had on e. 

The infinitesimal character of the transformation has many technical 
advantages, as discussed in I. A repeated application of the transformation 
reduces the number of spins to 

N ' =  Ne -s (18) 

and this induces a differential renormalization flow in the parameter s for 
the negative energy function e(m). Equation (16) can be rewritten as a 
partial differential equation for e(m,s). The solution of this equation was 
treated in paper I. 

In order to summarize a few properties of this differential equation 
which we will need in the present paper, let us remind that there is a critical 
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fixed point solution given by 

b*(m) = tanh-~m (19) 

Furthermore, we can write 

e(m,s) = e*(m) + 8e = e*(m) + ~an( s )m  n (20) 
n 

For small deviations from e*, we can linearize the differential equation in 
de. The solution of this linearized renormalization equation is then given by 

an(s ) = a,(0)exp((1 - nct)s) (21) 

By substituting (19) in (11),'we find that A (~*, m) is identically zero; 
this means that the relaxation time of the system is infinite at the fixed 
point, as it should be. In view of Eq. (12), it is evident that this basic 
property remains valid if we allow for transition probabilities different from 
those given by Eq. (6), as discussed in the previous section. 

To get information about the critical properties of the dynamics of the 
model, we want to proceed with a strategy similar to the one followed in the 
statics. The basic idea is to use the static mapping induced by (16) in order 
to establish a transformation of the given dynamical evolution, described 
by h, into a new one, described by h', and governed by transition probabili- 
ties (6) connected to the renormalized energy function e'. If we make sure 
that h' maintains the same functional form as h, it will be possible to 
extract information about the critical slowing down by only studying the 
established relation between h and h', without solving explicitly for the time 
evolution of h. 

Since the time evolution operator acting on h depends on b, it will be 
necessary for preserving the functional dependences that Eq. (10) for the 
evolution of h transforms in a covariant way, i.e., we expect h' to satisfy an 
evolution equation 

Oh' _ A (b', m)/z' (10') 
Ot' 

In Eq. (10') we have put a prime in the time variable, in view of the fact 
that we expect, also on physical grounds, that the time variable must be 
rescaled in order to obtain an equation like (10'). In the following we will 
indeed show that Eq. (10') can be established only at the cost of a rather 
complicated, m-dependent transformation of the time variable. 

Consider a given h, solution of Eq. (10), specifying the deviation from 
equilibrium of the probability distribution (7) of our system with negative 
energy function e(m). It is a straightforward procedure to calculate the 
effect of the infinitesimal transformation (16) on the function e + h. Keep- 
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ing for e' the expression given by Eq. (16), we obtain, up to first order in h, 

h ' =  h + N - ' ( h  + C/~) (22) 

where 

C = C ( m , b , a ) =  t a n h k - m -  ~A(2k ,  m) (23) 

It is clear that there corresponds to (22) a differential equation for h with 
respect to the variable s from (18). To obtain it, we have to write (22) in the 
form 

dL( s ,~ ,a )  
h ' =  h + ds ds h (24) 

where L is a linear operator on the function h. 
The function h', and in general h(m,  t, so), obtained by integrating Eq. 

(24) between 0 and s 0, specifies now the deviation from equilibrium of the 
renormalized probability distribution. Equations (22) and (24) constitute 
the basic relations for our dynamical mapping. 

In order to obtain the time evolution equation for the renormalized 
function h', we combine (22) with (10) and we get, up to corrections of 
order N - 2,4 

Oh___~' = A(~',m)l~' + N - ' ( C f l  - t~A)t~ - (A(~ ' ,m)  - A(b,m))t~ (25) 
at 

It is immediately clear that we do not yet obtain the desired covariance, as 
expressed in (10'). Our infinitesimal renormalization introduces in the 
dynamical equation some infinitesimal correction terms, which break the 
covariance. This is a general feature of the dynamical renormalization 
method, and it simply suggests to us that time itself has to be redefined in 
an appropriate nontrivial way, if we want to obtain some covariance 
property. Quite generally, we are thus looking for a new time variable 
tR(t,s,  m) such that h, defined by 

ft (rn, tg,S) = h(m,  t ,s) (26) 

satisfies for all s the equation 

al~ = A ( ~ ( m , s ) , m ) t ~  
3tR 

We 

(10") 

may always impose t R ( t , s = O , m ) =  t. After the first infinitesimal 

4 In writing down Eq. (10), we did not include some additional correction terms of order N -1, 
since they are not relevant to our discussion. (See, however, Ref. 4 for their importance in the 
study of metastable states.) Indeed, these terms should appear again in Eq. (25), with 
renormalization corrections of order N- 2. 
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renormalization step (ds = N -  t), we then have 

( t R = t + N - l f l  f l =  3s I (27) 

Equation (25) can then be seen to reduce to the covariant form (10"), if fl 
satisfies the equation 

0/3 + A- (cA - CA aA de ) _ a 
Ot R - A Om ~k ds ~ + y (28) 

As boundary condition for/3, we may choose/3(m, t = 0) = 0, which means 
that t R = 0 if t = 0, and this for all m and s. Looking for the full solution of 
(28) would of course be meaningless, since its homogeneous part is of the 
same form as (10), the equation which completely solves the dynamical 
problem. In the next section we will show how the dynamical critical 
properties, i.e., the properties of the solutions of (10) around the critical 
point, can be derived from the solution of (28) at the fixed point. 

The full renormalized time t R can be obtained from/3 by integration: 

foS ds, tR(m,t,s; [ e]) = t + /3 (m, t , (m, t , s  ; [ e]); [ e]) (29) 

where we pointed out the functional dependence of t R and/3 on e(m, s). 
In this section we have thus achieved the result of mapping the linear 

dynamical evolution for h as a function of t, which exists originally (i.e., for 
s = 0), into an identical evolution at s ~ 0 for/~ as a function of t R. Indeed, 
one can easily check on the basis of the above definitions and results that 
the following property must hold for general s: 

L(s, [ e])h(m,t ,  [ ho], [ e(s = 0)]) 

=f1(m, tR(m, t , s , [e] ) , [L(s , [e] )ho] , [e (s ) ]  ) (30) 

Here h(m, t, [h0], [e]) indicates the solution of the dynamical equation (10) 
for a given initial condition ho(m ) at t = 0. L(s, [e])h represents the solution 
of the renormalization equations (22)-(24). From their definitions it should 
be clear that L and t R depend functionally on e(s') for all s' between 0 and 
S. 

Equation (30) is the basic relation, which will allow us to investigate 
the properties of the dynamics near the fixed point. 

4. SCALING RELATION FOR THE RELAXATION TIME 

In this section, we first derive an expression for the renormalized time 
tR(m, t,s; [e]), asymptotically valid for large times (t ~ oo) and for systems 
in the critical region. The fact that a system is in the critical region means 



452 Stella and Dekeyser 

that e(m,s) will approximately become equal to e*(m) when s becomes 
sufficiently large. 5 

The quantity 7 defined in (28) is given by 

7 = A - ~ ( C A _ C A  OA~ d~ 

= - ~(1 - tanh2~) - a sinh2k + 2a~(cosh2~ - m sinh 2~) (31) 

At the fixed point solution (19), this reduces to 

V* = - 1 + 2a + am2~(1 - m 2) (32) 

Let us, for the time being, take the attitude that we are close enough to 
criticality to forget about the difference between - /and  7*. Furthermore, we 
will neglect the m dependence of "{. The validity of this assumption may be 
intuitively argued from the fact that if we let t become sufficiently large, the 
system will relax almost completely to its equilibrium state, in which the 
average magnetization is zero, or nearly zero, when close to criticality. 
Therefore, we expect that the dominant features of the critical behavior 
must be controlled by what happens around the point m - 0. We will show 
in the present section how this simplistic approach leads to the correct 
critical dynamical behavior. A more complete justification of these assump- 
tions is reported in the Appendix, where a detailed investigation is made of 
some basic properties of the solutions for fl and tR near criticality, 

Since at criticality we have that A = 0, in our approximations (28) 
leads immediately to 

fl ----- - (1 - 2a)t R (33) 

and from (29) 

t R -----texp[ - ( 1  - 2a)s ]  (34) 

It may be expected from the nature of our simplifications that this solution 
will be asymptotically correct in the critical region and for large enough 
times. 

Let us now look at the consequences of the time renormalization (34), 
by using the basic relation (30). This equation expresses the fact that time 
evolution and renormalization (s evolution) are commutative operations, 
when we use the proper renormalized time. It is natural to assume as 
general form for the time-dependent solution of Eq. (10) a superposition of 
exponentially decaying modes: 

h(m, t , [ho] , [e] )=  ~ , ) t k ( [ho] )Hk(m)exp{ - t / t k ( [e] )  } (35) 
k 

5 We have in mind the particular choice 1/3 < a < 1/2, which in view of (21) yields only the 
magnetic field and the temperature as relevant variables in the traditional sense. 
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H~(m) are the different modes that relax to zero at equilibrium. Since both 
the initial condition ho(m) and the energy function e(m) are influenced by 
the renormalization and are thus s dependent, we may expect that in the 
right-hand side of Eq. (30) X~, Hl,(m ), t, and the relaxation times t~ will all 
be s dependent. Our main interest lies, however, in the critical behavior of 
t 0, the relaxation time of the slowest mode. On the basis of Eq. (35), 
relation (30) may be rewritten as 

E ) tk ( [  ko])exp( - t / t g ( [  e(s = 0)] ) )  L(s ,  [ e ] )H~(m,s  = O) 
k 

= ~ ) t k ( [ L ( s , [ e ] ) h o ] ) t t ~ ( m , s ) e x p { - - t R ( t , s , [ e ] ) / t k ( [ e ( s ) ] ) )  (36) 
k 

If both t and t R become very large, only the slowest mode is of importance, 
and the identity of the corresponding terms leads us immediately to 

t t a ( t ' s ' [ e ] )  
to( [e(s  = O) ]) - to([ e(s) ]) (37) 

or, with (34), 

to( I e(s) ]) = e-(1-2")Sto([ e(s = O)]) (38) 

If we characterize the function e(m, s) by the coefficients a n defined in (20), 
we obtain the scaling relation 

to(( an }) = e O- 2~)Sto(( ane (1 -n~), }) (39) 

or, by defining 
= c ( l - - 2 a )  s 

this is equivalent to 

(40a) 

p = e - ~  (40b) 

to( { a. }) = )~t0( { )~v"- 2a. } ) (41) 

This equation for the relaxation time may be analyzed in a similar way as 
the scaling relation for the free energy in Paper I. As relevant application, 
let us again look at the case where only three parameters are important: 
a 1 = h, a 2 = '1".--, T -  T c, and a 4. We then have 

to(h , "r, a4) = Xto( Ok / p ) h  , XT, 2~02a4) (42) 

The p independence of the left-hand side implies that t o is a function of r 
and (h2a4) only, and thus 

to(h, ~, 44) = f (T ,  h244) = ~f(~.c, ~3h244) (43) 

This means that the relaxation time t o should be homogeneous of order 
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( -  1) in z and (h2a4) 1/3, or 

to-.-,[ r - Tel -1 for h = 0 (44) 

,-~h -2/3 for T = Tc (45) 

Both results may be understood from standard mean field arguments. 
We end this section by noticing that, if we would consider transition 

probabilities different from (6), and leading to time evolution operator 
coefficients given by Eq. (12), we would get in the expression for V a 
correction term equal to Cgt/a. Since at the fixed point C is equal to zero 
for m = 0, the above conclusions are expected to hold also in this more 
general case. The same kind of argument can still be seen to apply if we 
allow the function a(rn) to depend on m also through the argument b(m), 
i.e., if we make a(m) temperature dependent. In this case, of course, also 
the term OA/Ob .dk/ds in 7 is modified, but one can again check that the 
difference becomes zero at m = 0 for b = b*. This result provides an explicit 
example of a very simple mechanism of stability of the dynamical critical 
behavior with respect to modifications of the transition rate in the master 
equation. 

5. CONCLUDING REMARKS 

Even if strongly limited by the mean field character of the model, the 
approach presented here has, in our opinion, some remarkable features. A 
few of these features give clear indications of problems and properties 
which arise in more general and difficult contexts. 

As a first striking property, we would like to mention the m depen- 
dence of the renormalized time function t R. This m dependence, which 
turns out to be essential in establishing covariance in the equation of 
motion, is rather notable because it implies that time itself must become a 
random variable, on the same footing as m itself. In the case of short-range 
forces, one should thus by analogy expect that the time transforms under 
renormalization into a function of the spin configuration of the system. 
This is of course somewhat discouraging. To handle, even approximately, 
such a configurational dependence of the time will be a very hard task, 
certainly if one wants to embody this dependence in a reasonably simple 
global scheme of dynamical evolution, like that provided by the master 
e~uation. 

A rather interesting mechanism revealed by our analysis is the one 
discussed in detail in the Appendix. In our opinion it is of crucial impor- 
tance, because it shows how some very general features of the dynamics of 
the system are at the basis of the possibility of recovering the appropriate 
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dynamical exponents of the system by renormalization methods. Indeed, in 
the Appendix we show that the whole m-dependent part of 7 is irrelevant in 
determining the asymptotic large time behavior of fl, and thus of t R. This is 
due to the circumstance that the average magnetization relaxes to zero at 
criticality, irrespective of the detailed way in which this relaxation occurs. 

Another aspect that we were able to put directly in evidence is the 
detailed mechanism which leads in the dynamical critical behavior to the 
universality with respect to the choice of the transition rate within a rather 
wide class. The only effect of the modification of the transition rate is in the 
transient effects, occurring out of the asymptotic time regime, where scaling 
is expected (see Appendix). 

In closing our discussion, we want to call attention to the fact that a 
rather striking characteristic of the approach presented here is its relatively 
high degree of complexity, which one would not a priori expect when 
dealing with such simple systems as mean field models. This is once more a 
general, very eloquent indication of the serious difficulties involved in the 
realization of an equivalent renormalization approach to the dynamics of 
more realistic models. 

A P P E N D I X  

The equations (28)-(29) for the renormalized time have been solved 
straightforwardly in Section 4 on the basis of two qualitatively justified 
assumptions: (a) the m-dependent terms in 7 can be ignored, at least for 
sufficiently large times; and (b) for the calculation, the system is assumed 
to relax to its fixed-point equilibrium state, neglecting deviations from e*. 
In this appendix, we show that these assumptions are indeed legitimate. 

A.1.  T h e  m - D e p e n d e n t  T e r m s  " 

We show here that, for e close to e*, the contribution to fl of the 
m-dependent terms in y remains finite when t R goes to infinity. 

We start by noticing a basic property of the function A (~, m) [given by 
Eq. (11) or (12)] which enters in the time evolution equation (10) of the 
system. If we denote by S(m) the entropy function, already defined in 
Paper I, 

-- - f dm t anh- lm S(m) (A. l) 

we verify that, in general, at each ~ for which 

(~)  + ~ (~)  = 0 (A.2) 
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we also have 

A (~, ~ )  -- 0 (A.3) 

The m values which satisfy (A.2) correspond to extremal points for the 
equilibrium probability distribution of the m variable. This means that, 
irrespective of its detailed behavior, A (~, m) always vanishes at the ~ value 
which corresponds to the absolute maximum of that probability distribu- 
tion function. In the thermodynamic limit, this value coincides with the 
average magnetization, as follows immediately from a saddle-point argu- 
ment. 

Let us now consider, as an example, a situation for T > T c, with 
eventually a magnetic field present. The typical shape of - A  as a function 
of m is sketched in Fig. 1. We expect only one zero at N, coinciding with 
the origin in the case of zero external field. Secondary maxima are indeed 
excluded by the absence of metastable states for T > T c. 

The solution of Eq. (28) can be written in terms of the functions 
rh(rfi 0, t) and rho(th, t), which are, respectively, the solution of the character- 
istic equation (14) and its inverse. We have, namely, 

fl(m, t) = fotdt ' r(rfi (tho(m , t), t')) (A.4) 

We have suppressed in (A.4) the functional dependences on e(m), in order 
to simplify the notation. 

Due to the shape of A, it is easily recognized that N0(m, t) will tend to 
when t goes to infinity, whatever is the detailed behavior of rh 0. This 

reflects the fact that the mean magnetization approaches N for t going to 
infinity. The same property holds for rh(rh0(m, t), t') for every finite value of 
t'. This property now suggests to us splitting up fl into two pieces as 
follows: 

t , _ foo dt (T(m(mo(m, t ) , t ) )  - 7(m)) (A.5) B(m't )  =foo dt T(m) + t . . . .  

-A 

Fig. 1. Typical behavior of the function - A (b, m) for a situation above criticality and  in the 
presence of a magnetic field. If the magnetic field becomes zero, v~ coincides with the origin. 
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By a simple change of variable one can check that the second integral must 
be bounded, for every time t. Indeed, we can put it in the form 

- f ~  dxA - l (x)(y(x)  - 7 ( ~ ) )  (A.6) 
0(m, t) 

Since rfi0(m, t) approaches N for t going to infinity, this integral remains 
bounded (for reasonable behaviors of y and A around ~),  at least for 

~ O*. At the fixed point itself, the integral diverges, since at e* we have 
that A = 0. This means that for long times and for T ~> T C the asymptotic 
value of fl is always given by 

fl(m, t) ts-oo y (m) t  (A.7) 

This result tells us that indeed the qualitative discussion of Section 4 on the 
asymptotic behavior of the renormalized time function was substantially 
correct, at least above criticality. We must indeed take into account the fact 
that N must approach zero when the system becomes critical (i.e., at zero 
magnetic field). 

The discussion for T < Tc is complicated by the presence of metasta- 
ble states, which would amount to the presence of additional zeros for the 
function A (m). The basic arguments are the same as above, and we omit 
the full discussion. 

The transient time effects implied by the presence of terms of the form 
(A.6) in the behavior of fl will obviously depend on the type of transition 
rate we actually choose in the master equation, according to our consider- 
ations of Section 2. 

A.2. The Deviations from the Fixed Point 

We have just shown how we need a small deviation from criticality in 
order to prove the irrelevance of the rn dependence of the renormalized 
time. Nevertheless, also the explicit dependence on dO of ~, may be ne- 
glected, in the sense that it can only lead to corrections to scaling for the 
relaxation time t o . 

The irrelevant scaling fields may of course be neglected by letting s 
tend to infinity. Let us put h = 0 and restrict our argument to the depen- 
dence on the temperature parameter a 2 = ~. From (39) one can immedi- 
ately derive result (44), i.e., the inverse proportionality of the relaxation 
time to the deviation from the critical temperature. We will show how this 
result is changed if one includes the explicit a 2 dependence of ,/. 

From (31) one may show that 

y (m = 0) = - ( 1  - 2cQ(1 + 2a2) (A.8) 

which is correct up to terms of order a 2. Since a 2 scales according to (21), 
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this leads us to 

~tR - tR(1 -- 2a)[1 + 2a2e (l-2~)s] (A.9) 
Os 

This equation has the solution 

t R ( m = O , t , s , [ e =  e* + azm2])= t e x p ( - - [ ( 1 -  2a)s + 2a2e(~-2~)s]) 

(A.10) 

With the same argument that leads from (39) to (44), this gives us for the 
relaxation time the scaling relation 

t o ~ l r -  Tc[ - t exp ( -2 lT-  Tel ) (A.11) 

The exponential is of course a negligible correction term. A similar argu- 
ment may be given in the presence of a magnetic field. 
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